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Reactivity of per-O-acetylated 1-thioglycosides and glycosyl
sulfones towards chromium(II) complexes in aqueous medium
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Abstract—Anomeric carbon–sulfur bonds in 1-thioglycosides and glycosyl sulfones can be cleaved by chromium(II) complexes in
water–DMF medium. Anomeric radicals as well as sugar–chromium(III) complex intermediates can be generated in these reactions,
leading in some cases, to the exclusive formation of the corresponding glycals.
� 2006 Elsevier Ltd. All rights reserved.
The chemistry of the anomeric centre of carbohydrate
derivatives is characterized by the electrophilic nature
of this carbon.1 Umpolung of this reaction centre can
be achieved by the generation of glycosyl radicals2 or
–anions,3 and such transformations have also been
intensively investigated leading to elegant synthetic
methodologies and significant achievements in synthetic
carbohydrate and natural product chemistry.

With increasing social concerns towards pollution of the
environment, the quest for carrying out chemical trans-
formations under environmentally benign conditions
has been continuously growing. Among others, water
or aqueous conditions have been proposed for a large
array of organic reactions.4 However, most ‘classical’
methods used for the generation of glycosyl anions3

are incompatible with aqueous and even protic
conditions.

Some years ago, we demonstrated that glycosyl-chro-
mium(III) species were remarkably stable under aque-
ous conditions.5a This method could be elaborated for
the preparation of pyranoid glycals from per-O-acylated
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glycosyl chlorides or bromides in water–DMF solvent
mixture,5b and the transformation could also be per-
formed in water.5c Nevertheless, the sensitivity of these
substrates towards hydrolysis as well as nucleophilic
substitution and elimination proved a disadvantage of
these reactions leading to the appearance of several
by-products. Therefore, hydrolytically more stable
monosaccharide derivatives were sought to achieve
higher selectivity under aqueous conditions. In this
initial letter, we disclose our initial results on the investi-
gation of the reactions between thioglycosides/glycosyl
sulfones and chromium(II) complexes in water–DMF.

While the use of Cr(II) species for the reductive transfor-
mation of several functional groups (e.g., halogenides,
carbonyl and epoxides) under aprotic conditions6 has
become a very useful and popular synthetic method, to
the best of our knowledge, no chromium based reagents
have been applied as yet for the cleavage of C–S bonds.
Several thioglycosides/glycosyl sulfones were applied in
reactions with SmI2 to achieve the generation of glycosyl
radicals and/or –anions.3,7

The thioglycosides and glycosyl sulfones studied in this
work are collected in Table 1. The most reactive
[CrII(EDTA)]2� complex was used9 for testing the reac-
tions with derivatives 1–11 (Table 2). The formation of
glycals 12–15 (Scheme 1) was an indication of the
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Table 1. The substrates investigated
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Table 2. Reduction of the C1–S bonds by the [CrII(EDTA)]2� complex

Entry Substrate pH Reaction
time (h)

Productb Conversionc (%)

1 1 6 48 12 N.r.
2 2 9 18 12 N.r.
3 2 6 18 12 N.r.
4 2 5 18 12 17
5 2 4 18 12 >95
6 3 6 36 12 >95
7 4 6 36 12 15
8 4 6 2a + 34 12 17
9 5 6 48 12 N.r.
10 6 6 5 12 >95
11 7 6 5 12 >95
12 8 6 36 13 >95
13 9 6 36 13 >95
14 10 6 36 14 82
15 11 6 36 15 80

a T = 60 �C.
b 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-DD-arabino-hex-1-enitol (12),

3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-DD-lyxo-hex-1-enitol (13), 3,4-
di-O-acetyl-1,5-anhydro-2-deoxy-DD-threo-pent-1-enitol (14), 3,4-di-
O-acetyl-1,5-anhydro-2-deoxy-DD-erythro-pent-1-enitol (15).

c Calculated from the 1H NMR spectra.
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efficient formation of a glycosyl-chromium(III) interme-
diate.5a Phenyl thioglucoside 1 was not reactive (entry 1)
at the optimal pH for the formation of the
[CrII(EDTA)]2� complex.10 The reactions of 2-pyridyl
thioglucoside 2 exhibited an interesting pH dependence,
showing the highest reactivity under significantly acidic
conditions (entries 2–5). Since the concentration of the
reactive complex is essentially the same in the pH range
investigated,11 the differences must be due to proton-
ation of the pyridine ring. If unprotonated, this substitu-
ent has little potency for promoting the transformation
by stabilizing the postulated radical–anion intermediate,
but with a positive charge this capacity seems sufficient
for the reaction to occur. From the thioglucosides, 2-
benzoxazolyl derivative 3 showed much higher reactivity
as compared to its 2-benzothiazolyl counterpart 4
(entries 6–8), whilst the reaction of 10 corroborated
this finding (entry 14). In the glucosyl-sulfone series the
phenyl derivative 5 was again unreactive (entry 9), while
2-pyridyl and 2-benzothiazolyl compounds 6 and 7,
respectively, exhibited high reactivities (entries 10 and
11). Similarly, the DD-galactosyl (8, 9) and DD-arabinosyl
(11) derivatives (entries 12, 13, and 15) also showed
good reactivity.
The reactivity of the Cr(II) ion can be carefully regu-
lated by the coordinated ligand;5a,b therefore, the two
highly reactive sugar derivatives 3 and 7 were subjected
to reactions with less reactive chromium(II) complexes
(Table 3). With [CrII(OAc)2] (entries 1 and 2), the start-
ing materials were recovered (>90%). On increasing the
reactivity with ligands5b (MAL < GLY < IDA <
NTA < EDTA), the formation of the corresponding
glycal 12 could be detected (entries 3–10). Complete
conversions were reached when the [CrII(EDTA)]2�

complex was used (entries 11 and 12). In comparison
with 3, reduction of 7 with the less reactive [CrII(MAL)],



Table 3. Reduction of C1–S bonds by chromium(II) complexes

Entry Complex CrIILa Substrate pHb Conversionc,d (%)

1 [CrII(OAc)2] 3 6.5 N.r.
2 7 6.5 N.r.
3 [CrII(MAL)] 3 4.0 33
4 7 4.0 >95
5 [CrII(GLY)]+ 3 6.0 92
6 7 6.0 >95
7 [CrII(IDA)] 3 6.0 91
8 7 6.0 >95
9 [CrII(NTA)]� 3 6.5 73
10 7 6.5 >95
11 [CrII(EDTA)]2� 3 6.5 >90
12 7 6.5 >95

a L: malonic acid (MAL); glycine (GLY); iminodiacetic acid (IDA);
nitrilotriacetic acid (NTA); ethylenediaminetetra-acetic acid
(EDTA).

b Reaction time was 18 h in all reactions.
c Calculated from the 1H NMR spectra.
d Product: 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-DD-arabino-hex-1-

enitol (12).
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[CrII(GLY)]+, [CrII(IDA)], and [CrII(NTA)]� complexes
was also suitable, indicating that the 2-benzothiazolyl
sulfonyl moiety makes cleavage of the C–S bond espe-
cially easy. (Unfortunately, all efforts so far made
towards the preparation of the sulfonyl counterpart of
3 failed because of the extreme lability of that
compound.)

We suggest that radical formation is the first step in C–S
bond breaking (Scheme 1) with the cleavage of a sulfide
or sulfinate from the possible intermediate radical anion.
The structure of the aglycon (R) has a strong bearing on
the electron acceptor capacity of the substrates. The 2-
benzoxazolyl moiety was found to be the most effective
for thioglycosides and the 2-benzothiazolyl moiety for
glycosyl sulfones. The radical may equilibrate with a
glycosyl-Cr(III) intermediate which then decomposes
to give glycals 12–15.
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Figure 1. Typical kinetic curve5a recorded at 320 nm demonstrating
elimination of the organochromium(III) intermediate in the reaction of
[CrII(EDTA)]2� and 7 ([CrII] = 5 mM, [EDTA] = 7.4 mM, [7] =
0.5 mM, pH = 5, H2O/DMF = 1/1, t = 25 �C in 1.00 cm cell).
The UV–visible spectra (Fig. 1) show the decomposition
of the organometallic bond resulting in the elimination
product.

In order to test the hypothesis of the intermediate radi-
cal (Scheme 1), the reaction of 7 was performed in the
presence of acrylonitrile.12 Analysis of the reaction mix-
ture indicated the formation of C-glucosyl derivative
1613 as a product of radical coupling.

In this work, we have demonstrated that hydrolytically
stable anomeric C–S bonds can be cleaved by
chromium(II) complexes to produce a glycosyl radical
suitable for coupling as well as a C(1)–Cr(III) organo-
metallic bond featuring a carbanionic anomeric centre.
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